

Combined Heat and Power: A Proven Strategy for Cost-Effective CO₂ Emission Reductions

Kim Crossman
U.S. EPA CHP Partnership

Presented to the California Climate Change Symposium March 5, 2007

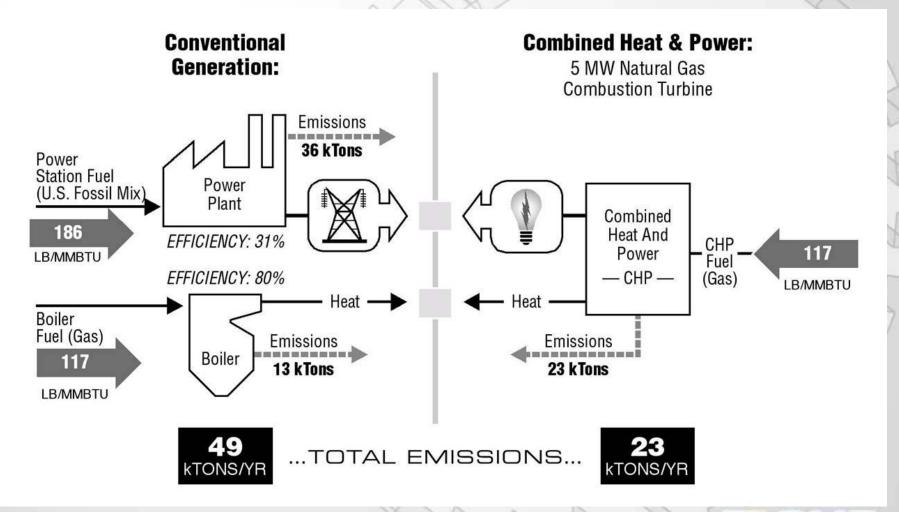
EPA & Combined Heat and Power

- The EPA CHP Partnership is a voluntary program that seeks to reduce the environmental impact of power generation by fostering the use of highly-efficient CHP
- Through 2006, the CHPP has helped Partners put into operation more than 250 CHP projects representing 3,577 MW of capacity, resulting in the emission reductions of over 10 million tons CO₂
- CHPP works with multiple CHP applications and with multiple fuel types

What Is Combined Heat and Power?

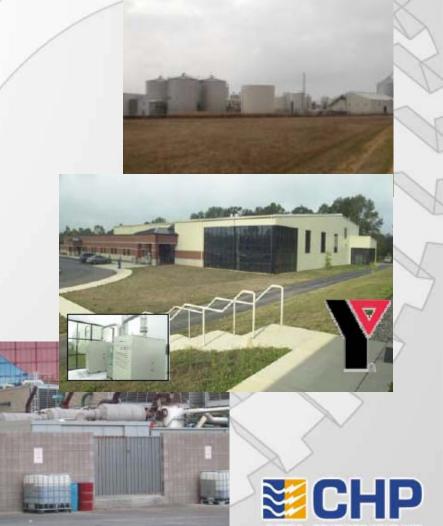
CHP is a highly efficient energy system that:

- Is located at or near a building/facility
- Generates electrical and/or mechanical power
- Recovers waste heat for
 - heating
 - cooling
 - dehumidification
- Can utilize a variety of technologies and fuels



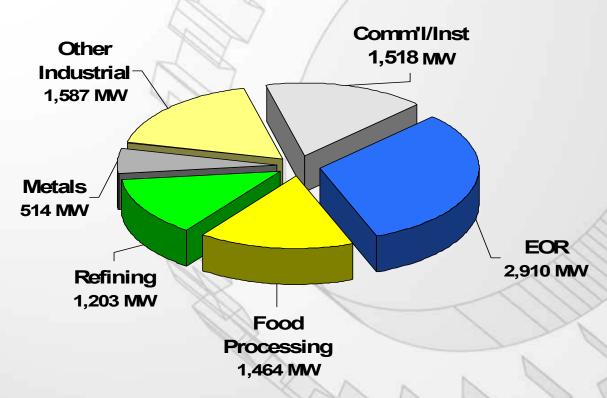
What Are the Benefits of CHP?

- CHP is more efficient than separate generation of electricity and thermal energy
- Higher efficiency translates to lower operating cost
- Higher efficiency reduces emissions of all pollutants, including CO₂, NO_X and SO₂
- CHP can increase power reliability and enhance power quality
- On-site electric generation reduces grid congestion and avoids distribution costs


Environmental Benefits of CHP: CO₂ Emissions Reductions

Market Opportunities for CHP

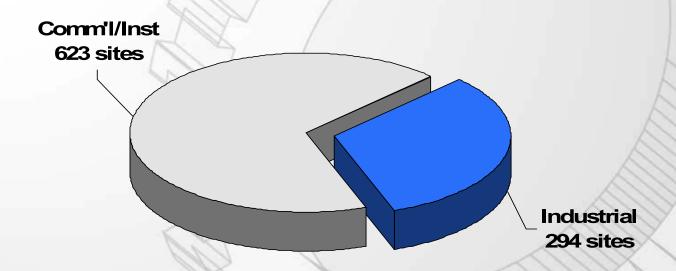
- CHP application is determined by need for thermal energy
- Traditional applications
 - Industrial processes
 - Hospitals
 - Universities & Colleges
- Market opportunities
 - Hotels and casinos
 - Municipal wastewater treatment
 - Biorefineries ethanol production
 - Biomass-fired CHP
 - Utility-owned CHP
 - Data centers


CHP Is Already Important to California

- 9,200 MW of CHP capacity installed at over 900 sites
- Average capacity is 10 MW
- 55% of installed capacity is in systems greater than 50 MW
- 88% of installed capacity is in systems greater than 20 MW
- Existing CHP saves over 300 TBtu of fuel each year
- Existing CHP eliminates over 20 million tons of CO₂ emissions each year

Existing California CHP Capacity Is Primarily in Industrial Applications...

Existing CHP Capacity (2006) = 9,196 MW



Source: EEA

But CHP Is Used by a Wide Variety of Users

Existing CHP capacity (2006): 917 sites

Source: EEA

CHP Applications by Sector in CA

Application	Number of Sites	Capacity, MW	Avg Size, kW	Technologies
Schools	110	8.6	78	Recip Engines, Microturbines
Laundries	64	1.1	17	Recip Engines
Hotels	63	28.9	459	Recip Engines, Microturbines, Fuel Cells
Health Clubs	46	6.2	135	Recip Engines, Microturbines
Colleges	45	269	5,978	Gas Turbines, Recip Engines
Hospitals	42	170.1	4,050	Gas Turbines, Recip Engines, Boiler/Steam
Office Buildings	41	34.1	832	Recip Engines, Microturbines, Fuel Cells
Waste Water Treatment	30	108.7	3,623	Recip Engines, Gas Turbines, Microturbine
Apartments/Condos	24	1.6	67	Recip Engines, Microturbines
Nursing Homes	16	4.9	306	Recip Engines

Source: EEA

Much Potential Remains Undeveloped

- Technical potential of over 30,000 MW at industrial and commercial facilities – significant resource for California
- Two-thirds of the opportunity is in commercial and institutional applications
- Primary opportunity is within-the-fence systems sized for thermal loads
- Over 80% of the potential is in systems below 5 MW
 - Industrial fabrication and assembly
 - Commercial hotels, schools, office buildings

What Role Could CHP Play?

- Economic potential (2005 2020)
 - Business as usual: 1,966 MW
 - High deployment: 7,340 MW
 - Existing incentives
 - Facilitation of the power export market
 - Addition of a T&D support payment
 - Addition of a CO₂ reduction payment
 - Rapid development and deployment of advanced technology
 - Overall improvement in customer acceptance of CHP investment opportunities

Potential Benefits of CHP in California

- Business as usual
 - 400 trillion Btu of cumulative energy savings
 - Close to \$1 billion in reduced facility operating costs
 - 15 year cumulative CO₂ emissions reduction of 23 million tons
- High deployment
 - 1,900 trillion Btu of cumulative energy savings
 - Customer net reduction in energy costs of \$6
 billion
 - 15 year cumulative CO₂ emissions reduction of
 112 million tons

What Makes CHP Possible in California

Favorable spark spread – cost of fuel vs power

Gas Turbine CHP	
Net CHP Power, MW	10
Unfired HRSG Steam Output, lb/hr	57,000
Total Thermal Output to Process, Btu/kWh	5,700
CHP Cost to Generate Power Estimator	
Operating Assumptions	
CHP Electric Efficiency, %	28.0%
CHP Fuel, Btu/kWh	12,186
Thermal Output, Btu/kWh	5,700
CHP Power to Heat Ratio (no duct burner)	0.60
Displaced Thermal Efficiency	80.0%
Thermal Utilization, %	100.0%
Incremental CHP O&M Costs, \$/kWh	\$0.0100
CHP Fuel Cost, \$/MMBtu	\$8.00
Displaced Thermal Fuel Cost, \$/MMBtu	\$8.00
Operating Cost to Generate	
CHP Fuel Costs, \$/kWh	\$0.0975
Thermal Credit, \$/kWh	(\$0.0570)
Incremental O&M, \$/kWh	\$0.0100
Operating Costs to Generate Power, \$\square\$kWh	\$0.0505

Avg. retail cost of power to C&I consumers in CA

~ \$.125

Current California Policies Help CHP

- Rule 21 (California's interconnection standard)
- Self Generation Incentive Program discontinued for gas-fired CHP after 2007
- Loading Order favors efficiency and DG
- CA DG Certification Program
- CEC Loans for Energy Efficiency Projects
- California Net Metering Standards (up to 1 MW)
- Favorable natural gas rates for CHP

Barriers to CHP in California

- Customer Awareness
 - Especially in non-traditional sectors
 - Critical power, datacenters, hotels, etc
- Customer Acceptance
 - Are energy costs perceived as a problem by CEOs, CFOs?
 - Is CHP considered high risk investment?
 - Are companies committed to remaining in business in CA?
- Cost and price volatility of natural gas
- Lack of recognition of environmental benefits
- Difficulty in selling excess electricity from a CHP generator leaves the 5,200 MW export market potential untapped

Potential Policies to Enable Increasing CHP Capacity

- Adopt a statewide CHP target
- Consider CHP MW target under RPS
- Raise acceptance and awareness of CHP technologies and benefits
- Recognize CHP as an efficiency measure
- Reward CHP for GHG reductions
- Restore combustion technologies to the Self Generation Incentive Program

Policies to Enable Increasing CHP Capacity (continued)

- Utility-owned and other creative financing structures of customer-sited CHP can greatly spur the development of CHP while making the business case for utilities
- Pay owners for grid/ societal benefits of CHP:
 - T&D capacity through a demand limitation agreement for CHP with physical assurance in capacity constrained areas
 - Availability during system peak times based on generation capacity value to improve resource adequacy
 - CO₂ emission reductions CHP achieves through higher efficiency (through a production tax credit in \$/kWh or other mechanism)

CHPP Tools/Support Available

For states

- Identify opportunities for strategic sector developments (ethanol production, wastewater treatment plants, hotels, and casinos) to encourage energy efficiency through CHP
- Identify opportunities for policy developments (energy, environmental, and economic) to encourage energy efficiency through CHP

CHPP Tools/Support Available

For projects

- Provide project-specific technical assistance, including identifying opportunities, quantifying economic, environmental and efficiency benefits.
- Maintain database of state and federal CHP incentives and beneficial policies/ regulations
- Facilitate peer-to-peer marketing and networking
- Administer ENERGY STAR CHP Awards for exceptionally efficient projects.
- Perform technical and market analysis, profile CHP potential, provide outreach in strategic market sectors.

For More Information

Kim Crossman, Team Leader Combined Heat and Power Partnership U.S. Environmental Protection Agency

crossman.kim@epa.gov

ph.: (202) 343-9388

fax: (202) 343-2208

www.epa.gov/chp

